Gradient 发布 Echo-2 RL框架,提升AI科研效率超10倍

项目动态热度: 4925

Gradient实验室发布Echo-2分布式强化学习框架,通过Learner-Actor解耦、存算分离与异步训练等技术创新,将30B模型后训练成本降低至425美元,提升科研吞吐超10倍;同步推出RLaaS平台Logits,推动AI研究向效率驱动范式转型。

摘要由 Mars AI 生成
本摘要由 Mars AI 模型生成,其生成内容的准确性、完整性还处于迭代更新阶段。

Gradient

分布式 AI 实验室 Gradient 今日发布 Echo-2 分布式强化学习框架(arxiv.org/pdf/2602.02192),旨在打破 AI 研究训练效率壁垒。通过在架构层实现 Learner 与 Actor 的彻底解耦,Echo-2 将 30B 模型的后训练成本从 4,500 美元骤降至 425 美元。在同等预算下,带来超过10倍的科研吞吐。

该框架利用存算分离技术进行异步训练 (Async RL),将海量的采样算力卸载至不稳定显卡实例与基于 Parallax 的异构显卡。配合有界陈旧性、实例容错调度、与自研 Lattica 通讯协议等技术突破,在保证模型精度的同时大幅提升训练效率。伴随框架发布,Gradient 也即将推出 RLaaS 平台 Logits,推动 AI 研究从“资本堆砌”向“效率迭代”范式转移。Logits现已面向全球学生与研究人员开放预约 (logits.dev)。

关于 Gradient

Gradient 是一家致力于构建分布式基础设施的AI实验室,专注于前沿大模型的分布式训练、服务与部署。Gradient获得了顶级投资机构支持,正在构建一个开放高效的未来智能时代。

声明:本文为入驻“MarsBit 专栏”作者作品,不代表MarsBit官方立场。
转载请联系网页底部:内容合作栏目,邮件进行授权。授权后转载时请注明出处、作者和本文链接。未经许可擅自转载本站文章,将追究相关法律责任,侵权必究。
提示:投资有风险,入市须谨慎,本资讯不作为投资理财建议。
本内容旨在传递行业动态,不构成投资建议或承诺。