未来隐私计算技术将得到进一步完善,使得数据在传输过程中更难被窃取和破解。
原文作者:Kyle, Investment Manager@Bing Ventures
原文来源:mirror
用户享受到了大数据提供的个性化服务,为生活带来了极大的便利,但是其中所采集的信息包括了身份、兴趣爱好、地理位置、个人收入等敏感信息。这些个人隐私信息一旦泄露将带来极大的安全隐患,因此隐私计算技术的出现为用户的数据安全提供了解决方案。
隐私计算(Privacy Computing)是指通过联邦学习、安全多方、同态加密、零知识证明等机密技术实现数据隐私性与使用性安全分离的综合性技术。除了能够保护数据隐私外,它能够使数据所有者掌控自己的数据,并且从中获得使用价值的算法技术。
在隐私计算框架下,参与方的数据明文不出本地,从而在保护数据安全的同时实现多源数据跨域合作,可以有效破解数据保护与融合应用难题。简单来说,隐私计算在保证数据本身不对外泄露的前提下,实现了“数据可用不可见”,以及数据价值的高效转化和流通。
一、隐私计算的崛起
隐私计算可以帮助用户在没有明确公开他们的数据的情况下,实现远程计算的功能。近年来,隐私计算行业发展迅速。据最新数据显示,截至2020年,全球隐私计算市场规模已达到286.1亿美元,预计到2026年,市场规模将达到1118.9亿美元,增长率达到28.6%。
随着行业的发展,隐私计算领域的最新需求也开始出现。隐私计算还需要强大的计算能力,以满足用户对更高效率和质量的要求。此外,可信计算也是隐私计算中的一个新兴领域。用户可以在不暴露数据的情况下,实现可信计算。
Source: SciencDirect
隐私计算的应用领域也在不断扩大。传统的应用领域主要集中在金融、医疗、政府和法律等领域,但是随着技术的发展,隐私计算已经进入了新的领域,如物联网、自动驾驶等。隐私计算的发展也促进了相关技术的发展。例如,在隐私计算中,加密技术扮演着重要的角色。随着隐私计算的发展,加密技术也取得了长足的进步,如基于随机数和纠错码的加密技术等。
综上所述,隐私计算行业发展迅速,其核心需求包括:(1)用户对隐私保护和安全的需求;(2)更强大的计算能力,以满足用户的要求;(3)可信计算的发展。未来,隐私计算行业将继续发展壮大,并不断满足用户对隐私保护、安全和效率的需求。
二、隐私计算技术分类
(一)常见技术实现方式
隐私计算技术有许多种实现方式,常见的隐私计算技术实现方式包括:
其中,加密计算是最常用的方式。它利用密码学原理,通过对数据进行加密处理,保护数据的隐私。匿名计算是另一种隐私保护方式,它将数据处理过程中的用户身份进行混淆,以防止用户隐私被泄露。混淆计算则是一种特殊的匿名计算方式,它利用概率理论,在数据处理过程中添加噪声,使得结果不确定,从而保护用户隐私。
从优劣对比分析来看,加密域计算和匿名计算都有一定的安全性。但是在复杂运算的情况下,加密域计算的性能较差,而匿名计算的安全性也不是特别高。相比之下,混淆计算的性能和安全性都更优,但是实现较为复杂,不太适合一些简单的运算。
(二)核心关联技术
隐私计算技术实现离不开以下三类技术:加密技术、隐私保护机制以及强化安全性技术。
通过上述分析,可以看出,加密技术和隐私保护机制能够有效保护参与方之间的数据安全,而强化安全性技术则能够更好地保护参与方之间的数据安全,但是会对计算效率造成一定的影响。因此,在不同的隐私计算场景中,需要根据实际情况选择合适的隐私计算技术,以确保数据的安全性和计算效率。
(三)主流计算路径
从技术的分类来看,隐私计算有以下几个主要方向:首先是以密码学为核心的隐私计算技术栈,包括安全多方计算、零知识证明以及同态加密等技术,其次是联邦学习、可信执行环境以及差分隐私等技术。我们重点介绍以下主流技术解决方案,即:安全多方计算(MPC)、零知识证明(ZKP)、同态加密(HE)、可信执行环境(TEE)、联邦学习(FL)。
在参与方不共享各自数据且没有可信第三方的情况下,这项技术仍可以进行协同计算,最终产生有价值的分析内容。
优点:
基于密码学安全原理,其安全性有严格密码理论证明,不以信任任何参与方、操作人员、系统、硬件或软件为基础。各个参与方对其拥有的数据拥有绝对的控制权,保障基本数据和信息不会泄露,同时计算准确度高并支持可编程通用计算。
缺点:
多方安全计算包含复杂的密码学操作,计算性能问题是应用的一大障碍。随着应用规模扩大,采用合适的计算方案保证运算时长与参与方数量呈现线性变化是目前各厂商面临的一大挑战。从安全性上看,多方安全计算的目标是保证多方数据融合计算时的隐私安全,一些传统安全问题,如访问控制、传输安全等,仍然需要其他相应的技术手段支持。
证明者(prover)可以在不透露具体数据的情况下让验证者(verifier)相信数据的真实性。零知识证明可以是交互式的,即证明者面对每个验证者都要证明一次数据的真实性;也可以是非交互式的,即证明者创建一份证明,任何使用这份证明的人都可以进行验证。
优点:
零知识证明的主要价值在于可以在以太坊等透明的公链上利用隐私数据集。区块链结合零知识证明技术,可以让用户和企业用隐私数据来执行智能合约,并且不透露具体的数据内容。零知识证明在区块链中目前应用的最多的是隐私交易。ZCash已经开始采用零知识证明,隐藏交易金额以及发送者和接收者的地址。
缺点:
需要找一个可信的第三方来创建初始化参数。创建过程中用到的随机数如果不被持续删除,那么获得这些随机数的人可以成功地伪造证明。这就是所谓的 trust setup 问题。
Source: Gartner
同态加密是一种加密形式,它允许人们对密文进行特定形式的代数运算得到仍然是加密的结果,将其解密所得到的结果与对明文进行同样的运算结果一样。
优点:
这项技术让人们可以对加密的数据进行处理,得出正确的结果,而在整个处理过程中无需对数据进行解密。全同态加密系统一般基于格理论等基础工具,可以对抗量子攻击。
缺点:
同态加密需要解决的一个核心问题是可以支持任意类型的计算。任意的意思是指加法和乘法,因为所有的计算程序抽象为算术电路表示都可以用加法和乘法实现。
它具有运算和储存功能,并且能提供安全性和完整性保护的独立处理环境。在该环境内的程序和数据,能够得到比操作系统层面(OS)更高级别的安全保护。
优点:
可信执行环境中的机密计算具有通用和高效的优势数据透视表,可以无缝支持通用计算框架和应用,同时计算性能基本可匹敌明文计算。它可以单独用于隐私计算,也可以与其他技术结合在一起来保护隐私。
缺点:
机密计算的缺点在于TEE信任链跟CPU厂商绑定,目前硬件技术被掌握在英特尔、高通、ARM等少数核心供应商手中,从而影响到机密计算技术的可信度。机密计算的另一个缺点是目前的TEE实现在理论上存在侧信道攻击的可能性,因为TEE与其它非可信执行环境空间共享了大量的系统资源。
这是一种分布式机器学习技术或框架,最初是由谷歌提出的。其实现了在本地原始数据不出库的情况下,通过对中间加密数据的流通和处理来完成多方联合的学习训练。目前联邦学习技术通常与安全多方计算技术以及区块链等技术相结合。
优点:
它能够解决训练阶段数据特征单一的问题,从而获得一个性能更好的、优于利用自己本身数据集所训练出的模型。
缺点:
它存在安全问题和通信效率问题。因为从底层编码开始构建一个基础的神经网络模型通常耗时耗力,目前多数企业从开源平台获取或第三方平台上购买基础模型,这样的基础模型本身就有植入病毒的可能。同时学术界对于联邦学习的安全保障效果尚无严格定义,利用中心服务器收集的梯度及权重信息还是有可能反推出每个参与方的数据信息。另外联邦学习的机制默认所有参与方都是可信方,无法规避某个参与方恶意提供虚假数据甚至病害数据,从而对最终的训练模型造成不可逆转的危害。
三、隐私计算的价值
(一)隐私计算的产业未来
当下社会,对于保障数据的安全以及对于数据的隐私保护已经成为了不可或缺的诉求,而隐私计算则成为了数据安全与隐私保护的最优解决方案之一。隐私计算技术的产业价值主要体现在以下几个方面:
具体来看,首先,隐私计算技术可以帮助企业提高数据分析效率。传统的数据分析方法需要将数据集中存储在一起,从而增加了数据安全风险。而隐私计算技术可以在不移动原始数据的情况下,进行数据分析,避免了数据的流失和泄露。这样,企业可以更快捷地进行数据分析,并节省大量的时间和成本。
其次,隐私计算技术可以帮助企业提高数据分析准确性。由于数据集中存储会导致数据混淆,导致分析结果不准确。而隐私计算技术可以在不损害原始数据隐私的情况下,进行数据分析,使得分析结果更加准确。这样,企业可以依靠准确的数据分析结果,制定更有效的商业决策。
(二)隐私计算的应用场景
隐私计算可能在以下一些应用场景中得到应用:
Source: Nature
隐私计算在区块链行业中有着广泛的应用。
以上就是隐私计算在区块链行业中的细分应用场景。总之,隐私计算是一种重要的技术。它可以在保护数据隐私的同时,为众多行业提供更好的数据分析能力。隐私计算既可以从保证数据在行业的各个组织之间发生交互过程中的安全和隐私,又能打消个人或者组织对于数据安全性的担忧,从而获得更多的数据支持。
四、隐私计算的阻碍
隐私计算目前发展的瓶颈主要有三个方面:
(一)隐私计算的技术难关
隐私计算技术目前面临着几大难题:
(二)隐私计算的标准缺失
目前,隐私计算领域存在若干个缺失难题,如:
(三)隐私计算的信任缺失
隐私计算目前存在信任难题,因为在数据分析过程中,数据需要进行综合分析,经常需要将多方数据联合分析,这就需要涉及数据隐私问题。例如,在银行业中,银行通常需要与多方协作分析客户信用信息,但是如果将客户的敏感数据直接暴露给外部合作方,会带来隐私泄露的风险。
为了解决这一信任难题,目前已有一些方案提出,如区块链技术、加密技术、匿名化技术等。这些技术可以有效保护数据隐私,但是它们也存在一些局限性。例如,区块链技术的性能有限,无法应对大规模数据分析的需求;加密技术可能会对数据分析产生影响,影响数据分析的准确性。
因此,要解决隐私计算的信任难题,需要在保护数据隐私的同时,提高数据分析的准确性和效率。这需要在技术、法律和制度层面上加以研究和改进,以便找到一种可行的解决方案。
五、“隐私计算+区块链”的潜力
当前,结合隐私计算结合区块链技术正在迅速发展。近几年,随着科技的发展,结合隐私计算结合区块链技术受到了更多的关注。特别是随着加密货币的出现,使得结合隐私计算结合区块链技术变得更加常见。 未来,结合隐私计算结合区块链技术的发展将会越来越快,而且将会进入更多的领域。比如,隐私保护方面将会有更多的应用,还可以在金融领域中更好地运用,以保护金融交易的安全性和便利性。此外,结合隐私计算结合区块链技术还可以运用于物联网、自动驾驶等领域,以保证设备之间的安全通信。
(一)“隐私计算+区块链”的融合
目前,隐私计算和区块链技术发展趋势主要体现在以下几个方面:
(二)“隐私计算+区块链”的难题
目前,隐私计算与区块链技术的结合存在一些困难。
因此,结合隐私计算与区块链技术的发展还需要继续探索和完善,才能更好地应对技术挑战,实现更高效和安全的数据分析与存储。总的来说,目前隐私计算与区块链技术的结合还需要在技术层面上进一步研究和探索,解决上述的技术难题。
六、隐私计算公链生态发展
在技术方面,隐私计算公链项目也取得了长足的进展。一些项目采用了先进的加密技术,实现了多方计算、隐私保护等功能,为用户提供了更安全、更私密的数据分析服务。根据数据分析,这类项目的用户数量和交易量均呈现上升趋势,表明市场对隐私计算公链技术的需求日益增长。此外,隐私计算公链项目的参与者也不断增多,吸引了众多知名企业和投资机构的关注。
总的来说,隐私计算公链项目目前发展良好,具有广阔的发展前景。随着社会对数据隐私保护的需求日益增长,隐私计算公链技术将在更多领域得到应用,为用户提供更好的服务。当我们评估一条隐私计算公链时,需要从以下方面进行分析对比:
1.Aleo
简介:Aleo 是第一个支持私有和可编程应用程序的去中心化开源平台。Aleo 使用零知识证明解决隐私问题、可编程的隐私公链,通过零知识证明技术隐藏参与者、智能合约、金额等交互细节。
融资:2021年4月20号Aleo获得了2800万美金的a轮融资,A16z领投,coinbase ventures和polychain capital跟投。2022年2月7日,Aleo宣布完成2亿美金的B轮融资,本轮融资由softbank和kora management领投,A16z和老虎基金跟投。
最新进展:Aleo 在 8 月 -10 月间运行测试网 3。第一阶段(8 月)面向开发者,开发人员可以开始编写、部署和执行程序。第二阶段(9 月)面向证明者,证明者解决 Coinbase 谜题 (PoSW)以获得学分。第三阶段(10 月)面向验证者,验证者通过出块获得奖励。Aleo 将在测试网 3 的 3 个阶段将 2500 万个 Aleo 积分(ALEO)分发给开发者、证明者和验证者社区。同时Aleo 团队计划在今年第四季度上线主网。
Source: Aleo
2.Secret Network
简介:Secret Network是基于 Cosmos SDK 和 Tendermint core 共识机制构建的一条 Layer 1 隐私公链,通过 IBC 协议能够与其他开通 IBC 接口的 Cosmos SDK 应用链实现互操作性。 Secret Network 主要通过以下几个主要组成部分实现数据隐私:加密智能合约(Secret Contract)和可信执行环境(TEE:Trusted Execution Environments)。
Source: Secret Network
融资:2021年5月完成由Arrington Capital和Blocktower Group领投的1150万美元融资。1月20 日,Secret Network 宣布推出 4 亿美元的生态系统基金以加强生态建设,投资方包括 Alameda Research、Dragonfly Capital、Fenbushi Capital 等。
3.Oasis Network
简介:Oasis Network 是支持隐私、可扩展的 Layer1 区块链,旨在为私有、可扩展的 DeFi 提供支持。Oasis Network 具有通证化数据的设计,通过该设计,用户可以通过将其数据在 Oasis Network 支持的应用中质押来获得奖励。
Source: Oasis Network
融资:2018 年 11 月融资 4000 万美元,投资机构包括 A16Z、Polychain Capital、Binance Labs、Pantera Capital 等知名风投;2021 年 11 月推出 1.6 亿美元的生态发展基金,资金来源包括 FBG、Jump Capital、NGC Ventures、Oasis Foundation、Pantera Capital 等投资机构,生态基金的应用场景包括 Defi、NFTs、元宇宙和数据代币化。
最新进展:Oasis 将推动首个 EVM 兼容隐私 ParaTime Sapphire 主网上线,进行主网升级以加强现有的隐私 ParaTime Cipher,以实现基于 WebAssembly(WASM)的隐私智能合约功能。
4.PlatON
简介:万向区块链孵化的隐私和智能计算公链。“计算互操作性”是其核心特征。PlatON 通过构建由可验证计算、安全多方计算、零知识证明、同态加密等密码算法和区块链技术组装而成的计算系统,为人工智能、分布式应用程序开发人员、数据提供者和有计算需求的组织、个人提供公共基础设施。
融资:2018年7月份在旧金山正式发布以来,两轮共计融资超过5000万美金,第一轮融资由Hashkey Capital、Youbi Capital联合领投,Hash Global Capital、SNZ Capital、Fundamental Labs等投资机构共同参与发起。第二轮融资由复星集团联合创始人、曾任复星集团总裁及CEO的梁信军先生发起,由高山资本和Hash Global Capital领投,新加坡OUE集团、亚洲领先的保险资管机构及其他家族办公室共同参与。
Source: PlatON
最新进展:PlatON在持续推进2.0的更新,PlatON 2.0 将采用三层网络的技术架构方案,分别是 Layer1 共识层、Layer2 隐私计算网络 Metis、Layer3 AI 代理自治网络 Horae 。三层架构的设计,旨在以去中心化方式聚集隐私 AI 计算所需的数据、算法和算力。
隐私计算公链项目在发展过程中应该重点关注技术的突破和差异化战略的落实,以应对市场竞争的挑战。例如,通过持续改进技术,提升隐私计算的性能和安全性;通过开发独特的应用场景和优质的用户体验,为用户提供更加优质的服务。
七、隐私计算公链如何突出重围?
隐私计算公共区块链项目可以通过以下几点来在竞争中脱颖而出:
(一)强大的隐私保护技术
在开发过程中,采用领先的隐私保护技术,如零知识证明、多重签名等,以保证用户信息的安全性和隐私性。一种方法是采用加密技术,例如零知识证明或聚合签名,来保护交易数据的隐私。这种技术能够在不泄露交易细节的情况下证明交易的合法性。
另一种方法是采用区块链扩展技术,例如分片技术,来提高网络的处理能力和安全性。这种技术能够让多个节点同时处理交易,提高交易的处理效率,同时降低交易被破解的风险。
(二)高效的交易处理能力
优化区块链的架构和算法,使交易处理能力更高效,提高系统的可扩展性和稳定性。一种方法是采用高效的隐私计算算法,如零知识证明、内容匿名化等,来保护交易信息的隐私,同时不影响交易处理的效率。项目方也可以采用更快速、高容量的分布式存储系统,来确保区块链网络能够进行大规模、高速的交易处理。
此外,项目方还可以通过不断完善和升级网络的技术架构,来提高网络的可扩展性和弹性,使其能够应对不断增长的交易流量。最后,项目方也可以与第三方合作,搭建快速、安全的支付通道,提供多种安全的交易方式,满足不同用户的需求,增强项目的竞争力。
(三)完善的应用生态
为用户提供丰富的应用场景,构建完善的应用生态,为用户提供便捷、安全的区块链服务。隐私计算公共区块链项目可以通过下列方式在应用生态中脱颖而出:
(四)创新的社群治理模式
DAO的匿名化将是不可阻挡的趋势。推行公平、透明、可信的社群治理模式,让用户参与其中,建立良好的社群氛围。隐私保护是目前区块链技术面临的一大挑战,许多用户因为担心隐私泄露而不愿意使用区块链应用。因此,隐私计算公共区块链项目可以提供更完善的隐私保护机制,如隐私计算技术、匿名账户系统、隐私保护协议等,来吸引用户加入DAO治理。
一种方式是通过在DAO治理中强调隐私计算的重要性并向社区展示其独特优势。例如,提供更安全、更高效的隐私保护机制,以及与其他公共区块链项目相比具有更低的交易成本等。同时,可以通过与相关专家和机构合作,为隐私计算项目提供更多的技术支持和合法合规保障。此外,还可以通过与社区成员的沟通和互动,收集并满足社区的需求,为隐私计算项目的发展提供更多的支持。
总结
2022年隐私计算公共区块链项目的发展趋势可以总结为三个方面:
未来隐私计算技术将得到进一步完善,使得数据在传输过程中更难被窃取和破解。隐私计算公共区块链项目将更多地应用于金融、医疗、政府等领域,提高数据安全性和审计可追溯性,同时将与其他区块链技术,如模块化、集成层、智能合约等相结合,实现更多的应用场景。
值得警惕的是,隐私计算公共区块链项目将面临更多的监管挑战,需要与相关部门沟通协调,确保数据隐私合法合规。该领域将会有更多的竞争对手出现,需要不断创新和提升技术,才能在市场中占据优势。